On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method

نویسندگان

  • José E. Adsuara
  • Isabel Cordero-Carrión
  • Pablo Cerdá-Durán
  • V. Mewes
  • Miguel A. Aloy
چکیده

The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi iterative method to solve linear systems of equations (Au = b) associated with elliptic problems. It inherits its robustness and accelerates its convergence rate computing a set of P relaxation factors that result from a minimization problem. This set of factors is employed in cycles of M consecutive iterations until a prescribed tolerance is reached.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Convergence of a semi-analytical method on the fuzzy linear systems

In this paper, we apply the  homotopy analysis method (HAM) for solving fuzzy  linear systems and present  the necessary and sufficient conditions for the convergence of series solution obtained via the HAM. Also, we present a new criterion for choosing a proper value of convergence-control parameter $hbar$ when the HAM is applied to linear system of equations. Comparisons are made between the ...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

Non-linear Static Modeling of Moderately Thick Functionally Graded Plate Using Dynamic Relaxation Method

In this paper, nonlinear static analysis of moderately thick plate made of functionally graded materials subjected to mechanical transverse loading is carried out using dynamic relaxation method. Mindlin first order shear deformation theory is employed to consider thick plate. Discretized equations are extracted for geometrically nonlinear behavior analysis.Loading Conditions and boundary condi...

متن کامل

Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation

We present a methodology that accelerates the classical Jacobi iterative method by factors exceeding 100 when applied to the finite-difference approximation of elliptic equations on large grids. The method is based on a schedule of overand under-relaxations that preserves the essential simplicity of the Jacobi method. Mathematical conditions that maximize the convergence rate are derived and op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 332  شماره 

صفحات  -

تاریخ انتشار 2017